
1

Detailed Modeling and Evaluation of a Scalable
Multi-level Checkpointing System

Kathryn Mohror, Adam Moody, Greg Bronevetsky, and Bronis R. de Supinski
Lawrence Livermore National Laboratory

{kathryn, moody20, bronevetsky, bronis}@llnl.gov

F

Abstract—High-performance computing (HPC) systems are grow-
ing more powerful by utilizing more components. As the system
mean time before failure correspondingly drops, applications must
checkpoint frequently to make progress. However, at scale, the cost
of checkpointing becomes prohibitive. A solution to this problem is
multilevel checkpointing, which employs multiple types of checkpoints
in a single run. Lightweight checkpoints can handle the most common
failure modes, while more expensive checkpoints can handle severe
failures. We designed a multilevel checkpointing library, the Scalable
Checkpoint/Restart (SCR) library, that writes lightweight checkpoints
to node-local storage in addition to the parallel file system. We
present a probabilistic Markov model of SCR’s performance. Our
model predicts that on future large-scale systems, SCR can lead to
a gain in machine efficiency of up to 35%, and reduce the load on the
parallel file system by a factor of two.

1 INTRODUCTION

Although supercomputing systems use high quality
components, they become less reliable at larger scales
because increased component counts increase overall
fault rates. HPC applications can encounter mean times
between failures (MTBFs) of hours or days due to
hardware breakdowns [1] and soft errors [2]. For exam-
ple, the 100,000 node BlueGene/L system at Lawrence
Livermore National Laboratory (LLNL) experiences an
L1 parity error every 8 hours [3] and a hard failure
every 7-10 days. Exascale systems are projected to fail
every 3-26 minutes [4], [5]. Most applications tolerate
failures by periodically saving their state to reliable
storage checkpoint files. Upon failure, an application can
restart from a prior state by reading in a checkpoint.

. This article has been authored by Lawrence Livermore National
Security, LLC under Contract No. DE-AC52-07NA27344 with the U.S.
Department of Energy. Accordingly, the United States Government
retains and the publisher, by accepting the article for publication,
acknowledges that the United States Government retains a a non-
exclusive, paid-up, irrevocable, world-wide license to publish or
reproduce the published form of this article or allow others to do
so, for United States Government purposes.

Checkpointing to a parallel file system is expen-
sive at large scale. A single checkpoint can take tens
of minutes [6], [7]. Further, large-scale computational
capabilities have increased more quickly than I/O
bandwidths. Typically, the limited bandwidth results
from system design choices that optimize for system
maintainability and availability.

Increasing failure rates due to increases in system
scale require more frequent checkpoints. Increased sys-
tem imbalance makes them more expensive. So, check-
pointing is both more critical and less practical. Thus,
large-scale applications require either more efficient
checkpoint mechanisms or alternatives such as process
replication, which have overheads over 100% [8].

Multilevel checkpointing [9], [10] uses multiple types
of checkpoints that have different levels of resiliency
and cost in a single application run to address this
problem. The slowest but most resilient level writes
to the parallel file system, which can withstand an
entire system failure. Faster but less resilient levels use
node-local storage, such as RAM, Flash or disk, and
apply cross-node redundancy schemes. Most failures
only disable one or two nodes, and multinode failures
often disable nodes in a predictable pattern [11]. Thus,
an application can usually recover from a less resilient
checkpoint level, given carefully chosen redundancy
schemes. Multilevel checkpointing allows applications
to take frequent inexpensive checkpoints and less fre-
quent, more resilient checkpoints, resulting in better
efficiency and reduced load on the parallel file system.

We evaluate multilevel checkpointing in large-scale
systems through a probabilistic Markov model. Our
major contributions are:
• A Markov model of multilevel checkpointing;
• An exploration of modeled multilevel checkpoint-

ing performance on current and future systems;
• An evaluation of the viability of checkpointing to

the parallel file system only upon job termination.



2

Overall, our results demonstrate that multilevel check-
pointing significantly improves current methods. We
show that it can increase system efficiency significantly,
with gains up to 35% while reducing the load on the
parallel file system by a factor of two.

The rest of this paper is organized as follows. Sec-
tion 2 presents related work. In Section 3, we describe
SCR, our Scalable Checkpoint/Restart library. Section 4
details our multilevel checkpoint model, Section 5 uses
it to evaluate multilevel checkpointing on current and
future systems. In Section 6, we extend our model to
study the possibility of only writing checkpoints to the
parallel file system when absolutely necessary.

2 RELATED WORK

Many models describe checkpoint systems [12], [13],
[14], [15]. However, few have modeled multilevel
checkpointing. Vaidya developed a Markov model for
a two-level checkpoint system [16]. We extend Vaidya’s
model to an arbitrary number of levels, each with its
own checkpoint and recovery costs and failure rate.
Our model also allows for sequential failures within a
given computation interval.

Panda and Das extended Vaidya’s model to predict
task completion probability. They assume a fixed num-
ber of spare resources and no repair [17]. In our model,
we assume the system has an infinite pool of spare
resources through repair of failed ones.

Gelenbe presented a Markov model for multilevel
checkpointing [9]. He derived a formula for system ef-
ficiency from the Markov model steady state equations.
However, he noted that an analytical solution for the
optimum efficiency was intractable. Instead, we derive
expressions for efficiency using a recursive method.

Researchers have combined checkpointing methods
to lower overheads while maintaining resiliency [18],
[19], [20]. However, to the best of our knowledge, SCR
was the first implementation of multilevel checkpoint-
ing on large-scale, production systems.

3 THE SCR LIBRARY

SCR enables MPI applications to use node-local stor-
age to attain high checkpoint and restart I/O band-
width [11]. We derive its approach from two key
observations. First, a job only needs its most recent
checkpoint. As soon as it writes the next checkpoint,
we can discard the previous one. Second, a typical
failure only disables a small portion of the system.

Our SCR design leverages these observations by
caching checkpoint files in storage local to the compute
nodes instead of the parallel file system. SCR caches

only the most recent checkpoints, discarding an older
checkpoint with each newly saved one. SCR can apply
a redundancy scheme to the cache, so it can recover
checkpoints after a failure disables some of the system.
SCR periodically copies (flushes) a cached checkpoint
to the parallel file system in order to protect against
wider failures. However, a well-chosen redundancy
scheme allows infrequent flushing of checkpoints.

LLNL uses SCR on Linux/x86-64/Infiniband clus-
ters with RAM disks or solid-state drives (SSDs). The
pF3D laser-plasma interaction code [21] has used SCR
since late 2007 on the Hera, Atlas and Coastal systems
at LLNL. We base our multilevel checkpoint model on
SCR’s implemention and evaluate SCR’s performance
using the model with parameters that represent SCR
usage by pF3D.

4 MULTILEVEL CHECKPOINT MODEL
Our novel probabilistic model of multilevel check-
pointing can predict the behavior of SCR given the
factors that can affect its performance. This model can
guide general use of multilevel checkpoint systems
for current and future systems and motivate system
designs that provide adequate overall reliability and
efficiency. To model multilevel checkpointing systems,
we make some simplifying assumptions that naturally
introduce errors into the model’s predictions. How-
ever, these errors are relatively small. We now discuss
our assumptions and their potential impact.

We assume that failures are independent. Thus, a
failure within a job does not increase the probability of
another failure within that job or future jobs. In reality,
some failures are correlated. However, SCR is designed
to mitigate effects of correlated failures. For example,
it can avoid using failed nodes in a job allocation as
those nodes may be likely to fail again.

We assume that checkpoints are taken at regular
intervals throughout the job. While not always true,
pF3D does checkpoint at regular intervals. We also as-
sume costs to read and write checkpoints are constant
throughout the job. However, read and write times
actually vary, particularly when shared resources such
as the parallel file system are used, which leads to some
error in our model. We assume that the application
recovers from the most recent viable checkpoint when
a failure occurs. We do not model possible savings
from using an older checkpoint that is also sufficient
for recovery but available from faster storage. Thus,
we may underestimate the possible performance of
multilevel checkpointing.

We assume an infinite pool of spare nodes. When
using SCR in practice, users often request extra nodes



3

in their job allocation; upon node failure SCR restarts
the job using the extra nodes, ignoring those that failed.
In general, the failure rate is less than the repair rate,
so this assumption typically holds. In the absence of
spare nodes, SCR copies the most recent checkpoint
to the parallel file system and terminates the job;
we model this capability in Section 6. Similarly, the
model does not account for batch system allocation
time limits. We assume a single level L checkpoint
period completes within the allocation time limit. In
practice, SCR handles batch limits by copying the most
recent checkpoint to the parallel file system before
the allocation expires. These assumptions cause our
model to overestimate performance if SCR must copy
checkpoints to the parallel file system.

4.1 Model Overview

In a multilevel checkpointing system, each of L check-
pointing mechanisms is a level, for which level 1 check-
points are the least expensive and resilient, while level
L checkpoints are the most expensive and resilient.
In our model, we assume that a checkpoint at level
k can be used to recover from a superset of the failure
modes that are recoverable using checkpoints at levels
less than k. A level k failure refers to a failure severe
enough that we require a checkpoint at level i ≥ k
for recovery. A level k recovery restores an application
using a checkpoint saved at level k. A multilevel check-
pointing system alternates between different types of
checkpoints. Since more severe failures happen less
frequently, the system records zero or more level k
checkpoints for every level k + 1 checkpoint.

In our Markov model of a multilevel checkpointing
system, nodes represent application states and edges
represent the transitions between states. We annotate
each edge with the probability that the application
will transition from the source state to the destina-
tion state and with cost information such as the time
spent in the source state given that the transition is
taken. Our model has computation and recovery states.
Computation states represent periods of application
computation followed by a checkpoint. Recovery states
represent the process of restoring an application from
a checkpoint saved previously.

Figure 1 presents our model’s basic structure. The
white states in the top row are computation states, and
the single blue state at the bottom is a recovery state.
We label each computation state by the checkpoint
level with which it terminates and the recovery state
by the checkpoint level that it uses to restore the
application. If no failures occur during application

11

k

k
Level ≤k
Failures
During

Computation or 
Checkpointing

Successful
Computation

Successful
Computation

Level < k
Failures
During
Recovery

Successful
Level-k
Recovery

Level ≥k
Failures
During
Recovery

Level >k
Failures
During

Computation or 
Checkpointing

Fig. 1. Basic structure of multilevel Markov model

Fig. 2. Hierarchical structure of Markov model

execution or checkpointing, the application transitions
from one computation state to the next. If a failure
occurs, the application transitions to the recovery state
corresponding to the most recent checkpoint capable
of recovering from the failure. For example, if a failure
at level i and i ≤ k while in the middle computation
state in Figure 1, the system transitions to recovery
state k, which restores the application using the check-
point that was written at the end of the previous
computation state. However, if i ≥ k, the system must
transition to a recovery state that corresponds to an
older checkpoint saved at a higher level.

If no failures occur during recovery, the application
transitions to the computation state that follows the
checkpoint used for recovery. If a failure at level i <
k occurs while in a level k recovery, we assume the
current recovery state must be restarted. However, if
i ≥ k, the application must transition to a higher-level
recovery state. We assume a level L recovery can be
restarted to recover after a failure at any level.

We exploit the recursive structure of our model to
develop recurrence equations that we efficiently solve
for the expected run time. As Figure 2 shows, we can
build a full model by recursively composing three basic
blocks, which we label X(k, c), Y (k, c), and Z(k, c),
where k, c ∈ 1, 2, · · · , L. An X(k, c) block consists of
a Y (k, c) block and a base state for recovery at level
k, Rk. A Z(k, c) block consists of a series of X(k, k)
blocks and a terminating X(k, c) block. When k > 1, a



4

Symbol Definition
L Number of checkpoint levels modeled
vk Number of level k checkpoints within

each level k + 1 period
t Length of compute interval before the

application initiates a checkpoint
ck Time to record a level k checkpoint
rk Time to complete a level k recovery
λk Average rate of level k failures assuming

Poisson distributions

TABLE 1
Model parameters

Y (k, c) block consists of either a single Y (k−1, c) block
or a Y (k − 1, k − 1) block followed by a Z(k − 1, c)
block. Finally, when k = 1, a Y (k = 1, c) block is a
base state corresponding to a computation state that
terminates with a checkpoint at level c. The parameter
c is the checkpoint level taken by the last compute state
in a block and k is the level of a block. An instance of
X(L,L) represents a level L interval.

We use the definitions listed in Table 3 to param-
eterize our multilevel checkpoint model. A technical
report includes complete derivations of the results in
Sections 9.3 to 9.6 [22]. In the interest of space, we only
report a high level description here.

4.2 Base States

For the base computation and recovery states, p0 is the
probability that the application executes for some time,
t0, without encountering a failure. For k ∈ 1, 2, · · · , L,
the probability that the first failure during this period
occurs at level k is pk and tk is the expected run time
before encountering that failure. With T representing
the time for spent in the state before exiting, and
assuming an exponential distribution, the expressions
for p0(T ) and t0(T ) evaluate to p0(T ) = e−λT and
t0(T ) = T , and for k ∈ 1, 2, · · · , L, pk(T ) and tk(T )
evaluate to

pk(T ) =
λk
λ

(1− e−λT ), tk(T ) =
1− (λT + 1) · e−λT

λ · (1− e−λT )
,

where λ = λ1 + λ2 + · · ·+ λL.
A Y (k = 1, c) block is a base computation state in

which the application executes for an interval of length
t and then writes a checkpoint at level c, which requires
a time of cc. From the formulas above, pY 0 = p0(t+ cc)
and tY 0 = t0(t + cc), and for i ∈ 1, 2, · · · , L, pY i =
pi(t+ cc), and when pY i > 0, tY i = ti(t+ cc).

k

PYR
TYR

pYk+1
tYk+1

pY0
tY0

PRY
TRY

pYk+2
tYk+2

pYL
tYL

PRXk+1
TRXk+1

PRXk+2
TRXk+2

PRXL
TRXL

X1 X2 Xk Xk+1 Xk+2 XL

X0

Fig. 3. Simplified diagram of X(k, c)

While in a recovery base state at level k, the system
is recovering from a failure using a checkpoint saved
at level k, which requires a time of rk. We find that the
probability of exiting with no failures is pR0 = p0(rk)
and the time to exit with no failures is tR0 = t0(rk). For
i ∈ 1, 2, · · · , L, the probability of exiting on a failure at
level i is pRi = pi(rk), and when pRi > 0, the time
before exiting on failure at level i is tRi = ti(rk).

4.3 The X(k, c) block

An X = X(k, c) block internally consists of a Y =
Y (k, c) block and a recovery state at level k, R = Rk.
To simplify the final expressions, we merge groups of
related transitions into single transitions. We show the
merged transitions in Figure 13(b).
Y transitions to the recovery state R for any failure

scenario that requires a recovery level at k or less. We
merge each of these transitions into a single transition
that has probability of PY R and an expected run time
of TY R. Once in R, a transition away from R eventually
happens, provided that

∑k
i=0 pRi < 1. However, one or

more loops back to R may occur before transitioning
away. We merge the transitions from R to Y ; its proba-
bility is PRY and its expected run time is TRY as shown
in Figure 13(b).

Failures at levels i ≥ k cause a transistion out of Rk
to a higher level recovery state. The transitions from
R have probability PRXi

and expected run time TRXi
.

However, if k = L, then recovery is restarted upon
failure at any level so for each i ∈ 1, 2, · · · , L, PRXi = 0.
While in a recovery state at level k < L, the system



5

Fig. 4. The Z(k, c) State

transitions to a recovery state at level k+1 if a level k or
level k+1 failure occurs. Otherwise, for the occurrence
of a failure at level i, where i > k + 1, a transition is
made to a recovery state at level i.

4.4 The Z(k, c) block
A Z = Z(k, c) block only exists when vk > 0. It consists
of a chain of X = X(k, k) blocks of length vk − 1
followed by a X ′ = X(k, c) block, as Figure 15 shows.
We define v = vk − 1.

The probability of successfully transitioning from the
Z block to the first computation state of the next block
is the probability that v consecutive successful tran-
sitions from X blocks are followed by one successful
transition from the X ′ block, pZ0 = (pX0)v ·pX′0. When
pZ0 > 0, the expected time to make this transition is
tZ0 = v · tX0 + tX′0. The total probability to leave Z for
a recovery state at level i is the sum of the probabilities
corresponding to each of the possible paths from the
substates of Z.

4.5 The Y (k, c) block
A Y (k, c) block is built using three different construc-
tions depending on the values of k and (when k > 1)
vk−1. If k = 1, then Y (k, c) = Y (k = 1, c), which is a
base computation state. The probability and expected
run time vectors for this state can be directly computed
as described in Section 9.3.

If k > 1 and vk−1 = 0, then Y = Y (k, c) consists
of a single Y ′ = Y (k − 1, c) block. We compute the
probabilities and expected run times to transition from
Y given the probabilities and expected run times to
transition from Y ′ as pY 0 = pY ′0 and tY 0 = tY ′0, and,
for each level i ∈ 1, 2, · · · , L, pY i = pY ′i and tY i = tY ′i.

If k > 1 and vk−1 > 0, then Y = Y (k, c) consists
of a starting Y ′ = Y (k − 1, k − 1) block followed
by a Z = Z(k − 1, c) block, as Figure 16 shows.

Fig. 5. The Y (k, c) State for k > 1 and vk−1 > 0

The probability that a successful transition from Y
occurs is the probability that both Y ′ and Z transition
successfully, pY 0 = pY ′0 ·pZ0 and the expected time for
this transition is tY 0 = tY ′0 + tZ0. The total probability
to leave Y for a recovery state at level i is the sum of
the probabilities for each path.

4.6 Model Metrics
We consider two key metrics: efficiency and parallel
file system load. We define efficiency as the ratio of
idealTime to expectedTime, where idealT ime is the min-
imum run time assuming the application spends no
time checkpointing and encounters no failures, while
expectedT ime is the expected run time that the model
predicts for a set of parameters. This metric indicates
how much time is lost to checkpointing, including
recovery from failures.

To compute efficiency, we parameterize the model
with a set of checkpoint levels including their check-
point and recovery costs, failure rates, and time be-
tween checkpoints. We then compute the expected time
to complete a level L period. The value of tX0 for the
X(L,L) state is the expectedT ime to complete a level L
period. The idealT ime is the total number of compute
intervals multiplied by the length of each interval.

To judge the impact on the parallel file system for
a particular model configuration, we consider the ex-
pected time between writing consecutive checkpoints
to the parallel file system. We define the load on the
parallel file system to be the inverse of expectedT ime.

5 MODEL EXPLORATION

We used our model to explore the behavior of SCR
under varying conditions. We show the benefits of
multilevel over single-level checkpointing as failure
rates and parallel file system characteristics change.

We show predictions of pF3D efficiency to those
observed in real runs on Coastal and Atlas in Table 5.
The data show that the model’s predictions are within



6

System Expected Observed Duration of
Efficiency Efficiency Observation

Coastal 95.2% 94.68% 716,613 node-hours
Atlas 96.7% 92.39% 553,829 node-hours

TABLE 2
Expected and observed efficiency

Fig. 6. Optimal efficiency for single- and multilevel
checkpointing

a few percent of our observations. Despite limitations
due to the significant time required to gather data,
these results demonstrate that our model is accurate.

We now use the model to explore multilevel check-
pointing in a more general context. For checkpoint
costs, we use the times observed for checkpointing
pF3D on Coastal using three different checkpointing
levels, with costs of 0.5 seconds, 4.5 seconds, and 1052
seconds, with recovery costs equal to checkpoint costs.
Using collected failure data for pF3D on Coastal, we
use rates in failures per job-second of 2 · 10−7 for level
1, 1.8 · 10−6 for level 2, and 4 · 10−7 for level 3.

As future systems become larger, failure rates are
expected to increase, and as the system memory size
grows faster than the performance of the parallel file
system, the cost of accessing the parallel file system is
expected to increase. To explore these effects, we in-
crease the base failure rates and the level L checkpoint
costs by factors of 2, 10, and 50. We do not adjust the
costs of lower-level checkpoints, since the performance
of node-local storage is expected to scale with system
size. For each combination, we identified the compute
interval and the level 1 and level 2 checkpoint counts
that provide the highest efficiency. We compare this
to single-level checkpointing, for systems with only a
parallel file system available.

Figure 6 presents the efficiency achieved for each
configuration, and Figure 7 shows the reduction in load

Fig. 7. Parallel file system load reduction

on the parallel file system. We label the results for the
multilevel system as “Multi” and those for the single-
level system as “Single.” The groupings of bars along
the x-axis correspond to failure rates that are 1, 2, 10,
or 50 times the base values. Within each grouping, we
increase the cost of the level L checkpoint by 1, 2, 10,
and 50 times the base value.

In all cases, the multilevel system results in higher
efficiencies and increases the time between checkpoints
to the parallel file system. Moreover, both advantages
increase with either increasing failure rates or higher
parallel file system costs. The gain in machine effi-
ciency ranges from a few percent up to 35%, and, as
Figure 7 shows, the load on the parallel file system is
reduced by a factor ranging from 2x-4x. Thus, com-
pared to single-level checkpointing, multilevel check-
pointing simultaneously increases efficiency while re-
ducing load on the parallel file system. These results
highlight the benefits of multilevel checkpointing on
current and future systems.

Overall, we find that multilevel checkpointing is
essential for future systems. Even with systems that
are 50× less reliable, a three level checkpointing system
achieves efficiencies over 75%, as long as we maintain
relative parallel file system performance. On the other
hand, we find that we cannot tolerate higher failure
rates if the cost to access the parallel file system also
increases. In particular, if systems become 50× less
reliable and the cost of saving application state to
the parallel file system rises by 10×, a three level
checkpointing system only achieves 26% efficiency.



7

6 SCAVENGING OF LAST CHECKPOINT

We now extend our model to the scenario in which we
only write level L checkpoints upon job termination,
and not periodically during the run. This scenario
could be advantageous on systems that have high costs
for level L checkpoints. Also some systems do not
support application restart on its current allocation
when a failure occurs; instead, the job must be restarted
in a new allocation. In this case, upon application
termination, a multilevel checkpoint system should
write the last complete checkpoint to the parallel file
system. This approach only incurs the high overhead of
level L checkpoints when strictly necessary. However,
this carries the risk of the level L checkpoint failing
because the lower-level checkpoints were corrupted.

We refer to the process of pushing a checkpoint set
to the parallel file system upon allocation termination
as scavenging a checkpoint. Scavenging only occurs on
application failure. Level k < L checkpoints are taken
at regular intervals during the application run and
cached on the compute nodes.

We make several assumptions in our model. In the
event of any failure, the application does not restart;
instead, the scavenge process begins. On a level k fail-
ure, we attempt to scavenge the most recent checkpoint
at level i ≥ k. If a failure occurs at level i ≥ k while
scavenging, we attempt to scavenge the most recent
checkpoint at level j or greater, where j > i. If a
level L failure occurs while scavenging, the scavenge
operation fails. When the application is restarted in a
new allocation, it must roll back to the last level L
checkpoint taken before the prior allocation. Finally, we
estimate the time to scavenge the level k checkpoint as
the time for a level L checkpoint. In reality, we may
incur a small additional overhead to rebuild the level
k checkpoint depending upon the failure mode.

We evaluate the effectiveness of scavenging by com-
puting the expected efficiency of the job, as defined
in Section 4.6. However, we compute it differently,
because the job will terminate on any failure and not
attempt restarts. We define efficiency as the ratio of
the expected amount of work done by the application
before its expected termination time either on success,
wX0, on scavenge, wXS , or on failure without a success-
ful scavenge, wXi. In our model, the work done by the
application is the checkpoint interval, t, multiplied by
the number of intervals completed successfully; work
excludes the time for any checkpointing activities. The
expected termination time is the time to exit on success,
tX0, on scavenge, tXS , or on failure without successful
scavenge, tXi, and includes the work time, level k ≤ L

checkpointing time, and scavenge time.

efficiency =
pX0 · wX0 + pXS · wXS + pXi · wXi
pX0 · tX0 + pXS · tXS + pXi · tXi

We base our revised efficiency computation on the
amount of work performed in each state. On fail-
ure, if scavenging succeeds, we compute the expected
amount of work completed before the failure. If scav-
enging fails, we compute the expected amount of work
completed in failure transitions only. A transition from
state on success means that no failures occurred and
the amount of work completed is the work accumu-
lated in any substates of the current state.

If a level k failure occurs and the current state
contains a level i ≥ k checkpoint, we can scavenge
a checkpoint. We call this transitioning on scavenge. In
this case, the amount of work completed is the amount
of work accumulated in substates before the failure. A
transition on failure occurs if the current state does not
contain a level i ≥ k checkpoint or a level i ≥ k failure
occurs while scavenging. On failure transitions at level
i > k, the amount of work completed in the current
state is zero. In the extreme case, if no completed check-
points can be scavenged and the application must roll
back to the last level L checkpoint, the total expected
amount of work completed is zero.

We make several changes to our model. Recov-
ery states within X(k, c) are now scavenge states.
Transitions from each compute state at failure levels
i <= k are scavenge transitions. Instead of maintain-
ing the probability, expected total time, and expected
amount of work at each failure level for scavenge
transitions, we compute the overall expected values.
Unless otherwise specified, the probabilities and times
for exiting states on failure and success are the same
as in Sections 9.3 to 9.6.

6.1 Y States

The simplest case is a Y (k = 1, c) block, which contains
a single compute interval of duration t followed by
a level c checkpoint. Upon successful transition from
this state, the expected amount of work completed
is t. Upon transition from Y on failure for any level
i ∈ 1, 2, · · · , L, wY i = 0 because no work interval and
checkpoint completed successfully. We cannot transi-
tion from Y on scavenge, because a Y (k = 1, c) state
does not contain a scavenge state. Thus, on transtion-
ing from Y , pS = 0, tS = 0, and wS = 0.

If vk−1 = 0 and k > 1, Y consists of a single
enclosed Y (k−1, c) state, Y ′. The work completed for a
transition from Y on success or failure is wY 0 = wY ′0



8

Fig. 8. The Y (k, c) State for vk−1 > 0

Fig. 9. Z(k, c) State

and wY i = wY ′i = 0. For a scavenge transition, we
have pY S = pY ′S , tY S = tY ′S , and wY S = wY ′S .

If vk−1 > 0 and k > 1, Y consists of a Y ′ = Y (k −
1, k−1) state and a Z = Z(k−1, c) state (Figure 17(c)).
On successful transition from Y , wY 0 is the sum of the
work done in Y ′ and Z, wY 0 = wY ′0 + wZ0. Upon a
transition from Y on failure at levels i ∈ 1 · · ·L, wY i =
0. The probability of transitioning on scavenge pY S is
the probability that the job exits on scavenge in Y ′ or
completes Y ′ successfully and exits on scavenge from
Z. Similarly, the time and work completed, tY S and
wY S depend on the probabilities of transitioning from
Y ′ and Z on success or scavenge.

6.2 Z State

A Z = Z(k, c) state consists of v = vk − 1 consecutive
X = X(k, k) states, followed by a X ′ = X(k, c)
state (Figure 18). The expected amount of work that is
performed in Z on successful transition from the state
is wZ0 = wX0 · v + wX′0. Upon transition from Z on
failure for i ∈ 1 · · ·L, the amount of work completed
is wXi = 0.

6.3 X State

An X = X(k, c) state consists of a Y = Y (k, c) state
and a scavenge state σk. A failure at level i ≤ k in Y

Fig. 10. X(k, c) State

causes a transition from Y to σk. For any failures at
levels i < k that occur in σk, the scavenge operation
restarts. Failures at levels i ≥ k in Y or i ≥ k in σk,
cause a transition from X on failure.

The probability and time for a successful transition
from X are pX0 = pY 0 and tX0 = tY 0. The expected
amount of work that is performed in X on successful
transition from the state is the amount of work that
was performed in Y , wX0 = wY 0.

A failure at level i ≤ k in Y causes a transition to the
scavenge state σk. The amount of work done on transi-
tion from Y to σk is wY σk

= 0. As stated previously, we
estimate the time for a successful scavenge operation as
the time for a level L checkpoint, cL. Failures at levels
i < k restart the scavenge operation. The probabilty
and time before a restart of the scavenge operation are
Pσσ and Tσσ . No work is done in σk, so wσi = 0.

The probabililty and time for leaving σk on success
or failure for i ∈ 0, 1, · · · , L depend on the probabilities
for exiting σk succesfully after a number of restarts. The
amount of work accomplished is Wσi = wσ0. However,
if Pσσ = 1 then Pσi, Tσi, and Wσi are zero.

When transitioning from X on failure at level i = k,
the probability, time, and work only depend on the
scavenge state. However, when transitioning from X
on failure at level i > k, the values depend on the Y
and scavenge states.

6.4 Model Predictions of Benefits of Scavenge

We now use our model to predict the performance of
scavenging. In our experiments, we use the overhead
and failure rates for the Coastal cluster at LLNL, given
in Section 5. We first explore the relationship between
application efficiency and the compute interval. We



9

Fig. 11. Application success or scavenge probabilities

vary the failure rates and overhead of writing to the
parallel file system by 1×, 2×, and 10× as described
previously in Section 5. The trend for today’s failure
rates is a broad range of compute intervals with near-
optimal efficiencies (89%, 95%, and 96%) that level off
near 80%, 90%, and 92% as overheads increase by 1×,
2×, and 10× and checkpoint intervals increase up to
10,000 seconds. At failure rates that are 2× greater
than today’s, the ranges of near-optimal efficiencies are
shorter, peak at 83%, 93%, and 95%, and level off at
74%, 83%, and 87% efficiencies for increasing check-
point overhead and checkpoint interval up to 10,000
seconds. However, at failure rates of 10×, the curves
reach lower optimal efficiencies (55%, 81%, and 88%)
and drop off more sharply with increasing compute
interval to 46%, 67, and 70% efficiencies.

We predict the probability that an application will
exit with its last checkpoint written to the parallel
file system, either with no failures or on scavenge.
For this experiment, we fix the probability of exiting
the scavenging operation at 80%, based on observed
successful scavenge rates with pF3D. We show the
results for varying parallel file system overhead and
failure rates in Figure 11. The probability of exiting
with no failures starts at 86% and decreases with both
increasing parallel file system and failure rates to a
low of 17% when the overhead and failure rates are
increased to 10×. In contrast, the probabilities of exit-
ing on scavenge increase with increasing overhead and
failure rates, from 12% at today’s overhead and rates
to 77% when they are increased 10×. The combined
probability of exiting with no failures or on scavenge
is 99% on today’s systems and falls slightly with
increasing overhead and failure rates to a low of 94%
when the overhead and rates are at 10×. The remaining
1-6% are the probabilities that the application exits

Fig. 12. Reliability of scavenge operation and efficiency

without being able to transfer the final checkpoint to
the parallel file system.

We use our model to predict the reduction in load
on the parallel file system when using scavenging
compared to single-level checkpointing. Here, the load
is the expected time between writes to the parallel file
system. Scavenging greatly reduces the load on today’s
systems, by 20×. As parallel file system overhead
increases, the benefit of scavenging decreases; however
the lowest beneft in our experiments is still 10× re-
duction in load. In general, the benefit increases with
increasing failure rate, reaching a maximum reduction
of 60× for failure rates at ten times today’s values.

In Figure 12, we explore the relationship between
the reliability of the scavenge operation and applica-
tion efficiency. We fix the probability of completing
the scavenge operation to a given value instead of
computing the probabilty as given in Section 10.3.
Generally, job efficiencies are high for systems with
today’s failure rates, because the probabilties of exiting
the job successfully without needing to scavenge are
relatively high. However, with increasing failure rates
and parallel file system overheads, the reliability of
scavenging affects job efficiency more drastically. We
find that on future systems with higher failure rates,
a highly reliable scavenge operation can increase job
efficiency by as much as 2.4×.

Overall, our results show that a scavenge mechanism
can dramatically extend the range of systems for which
checkpoint/restrt remains a viable resilience strategy.

7 CONCLUSIONS

We presented models of multilevel checkpointing,
which we validated against results with the Scal-



10

able Checkpoint/Restart (SCR) library. SCR combines
checkpointing to stable storage with lower-overhead,
less-resilient checkpoint types, e.g., copying check-
points to memory on other nodes. Our novel, hierarchi-
cal Markov models predict the performance of multi-
level checkpointing systems based on system reliability
and checkpoint cost. This model can guide users in
selecting the best checkpointing parameters for their
application. Our analysis with this model demonstrates
that multilevel checkpointing significantly improves
system efficiency, particularly as failure rates and rel-
ative parallel file system checkpoint costs increase. We
find that we can still achieve 85% efficiency even if
systems become 50× less reliable. Further, multilevel
checkpointing simultaneously reduces the load on the
parallel file system by more than a factor of two.

We explored the impact of checkpoint scavenging, a
key extension to multilevel checkpointing. We found
that scavenging results in high efficiencies even when
overheads of the parallel file system are increased by
2× and 10×. Further, the extremely high probability
(99%) that the final checkpoint of the job can be
transferred to the parallel file system means that work
completed in the failed job is not lost and the job can
be restarted in a new allocation. Scavenging also has
the benefit of only writing to the parallel file system
when absolutely necessary. Our model predicts that
scavenging can reduce the load on the parallel file
system by as much as 20× on today’s systems, and up
to 60× on future systems. We also found that a highly
reliable scavenge operation can increase job efficiencies
by up to 2.4× on systems with higher failure rates and
parallel file system overheads.

REFERENCES

[1] B. Schroeder and G. A. Gibson, “A Large-Scale Study of Failures
in High-Performance Computing Systems,” in Proceedings of
the International Conference on Dependable Systems and Networks
(DSN), June 2006, pp. 249–258.

[2] S. E. Michalak, K. W. Harris, N. W. Hengartner, B. E. Takala,
and S. A. Wender, “Predicting the Number of Fatal Soft Errors
in Los Alamos National Laboratory’s ASC Q Supercomputer,”
IEEE Transactions on Device and Materials Reliability, vol. 5, no. 3,
pp. 329–335, September 2005.

[3] J. N. Glosli, K. J. Caspersen, J. A. Gunnels, D. F. Richards,
R. E. Rudd, and F. H. Streitz, “Extending Stability Beyond CPU
Millennium: A Micron-Scale Atomistic Simulation of Kelvin-
Helmholtz Instability,” in Proceedings of the 2007 ACM/IEEE
Conference on Supercomputing (SC), 2007, pp. 1–11.

[4] B. Schroeder and G. Gibson, “Understanding Failure in Petas-
cale Computers,” Journal of Physics Conference Series: SciDAC,
vol. 78, p. 012022, June 2007.

[5] E. Vivek Sarkar, Ed., ExaScale Software Study: Software Challenges
in Exascale Systems, 2009.

[6] K. Iskra, J. W. Romein, K. Yoshii, and P. Beckman, “ZOID:
I/O-Forwarding Infrastructure for Petascale Architectures,” in
PPoPP ’08: Proceedings of the 13th ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, 2008, pp. 153–162.

[7] R. Ross, J. Moreira, K. Cupps, and W. Pfeiffer, “Parallel I/O
on the IBM Blue Gene/L System,” Blue Gene/L Consortium
Quarterly Newsletter, Tech. Rep., First Quarter, 2006.

[8] R. E. Lyons and W. Vanderkulk, “The Use of Triple-Modular
Redundancy to Improve Computer Reliability,” IBM Journal of
Research and Development, vol. 6, no. 2, pp. 200–209, 1962.

[9] E. Gelenbe, “A Model of Roll-back Recovery with Multiple
Checkpoints,” in Proceedings of the 2nd International Conference
on Software Engineering (ICSE ’76), 1976, pp. 251–255.

[10] N. H. Vaidya, “A Case for Multi-Level Distributed Recovery
Schemes,” Texas A&M University, Tech. Rep. 94-043, May 1994.

[11] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supinski,
“Design, Modeling, and Evaluation of a Scalable Multi-level
Checkpointing System,” in Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and
Analysis, SC’10, November 2010, pp. 1 –11.

[12] J. W. Young, “A First Order Approximation to the Optimum
Checkpoint Interval,” Communications of the ACM, vol. 17, no. 9,
pp. 530–531, 1974.

[13] A. Duda, “The Effects of Checkpointing on Program Execution
Time,” Information Processing Letters, vol. 16, no. 5, pp. 221–229,
1983.

[14] J. S. Plank and M. G. Thomason, “Processor Allocation and
Checkpoint Interval Selection in Cluster Computing Systems,”
Journal of Parallel Distributed Computing, vol. 61, no. 11, pp. 1570–
1590, 2001.

[15] J. Daly, “A Higher Order Estimate of the Optimum Checkpoint
Interval for Restart Dumps,” Future Generation Computer
Systems, vol. 22, no. 3, pp. 303 – 312, 2006. [Online].
Available: http://www.sciencedirect.com/science/article/
B6V06-4F490KH-6/2/6ebfa65591e5d0eb09e2ae5ae3b2ed44

[16] N. H. Vaidya, “A Case for Two-Level Distributed Recovery
Schemes,” in Proceedings of the 1995 ACM SIGMETRICS Joint
International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS ’95), 1995, pp. 64–73.

[17] B. S. Panda and S. K. Das, “Performance Evaluation of a
Two Level Error Recovery Scheme for Distributed Systems,”
in 4th International Workshop on Distributed Computing, Mobile
and Wireless Computing (IWDC), 2002, pp. 88–97.

[18] L. Silva and J. Silva, “Using Two-Level Stable Storage for
Efficient Checkpointing,” IEEE Proceedings - Software, vol. 145,
no. 6, pp. 198–202, Dec 1998.

[19] J. S. Plank and K. Li, “Faster Checkpointing with N+1 Parity,”
in Twenty-Fourth International Symposium on Fault-Tolerant Com-
puting (FTCS), Digest of Papers, Jun 1994, pp. 288 –297.

[20] L. A. Bautista-Gomez, S. Tsuboi, D. Komatitsch, F. Cappello,
N. Maruyama, and S. Matsuoka, “FTI: High Performance Fault
Tolerance Interface for Hybrid Systems,” in Proceedings of the
International Conference for High Performance Computing, Network-
ing, Storage and Analysis, SC’11, 2011.

[21] R. L. Berger, C. H. Still, E. A. Williams, and A. B. Langdon, “On
the Dominant and Subdominant Behavior of Stimulated Raman
and Brillouin Scattering Driven by Nonuniform Laser Beams,”
Physics of Plasmas, vol. 5, p. 4337, 1998.

[22] A. Moody, G. Bronevetsky, K. Mohror, and B. R. de Supin-
ski, “Detailed Modeling, Design, and Evaluation of a Scal-
able Multi-level Checkpointing System,” Lawrence Livermore
National Laboratory Technical Report, LLNL-TR-440491, Tech.
Rep., 2010.

http://www.sciencedirect.com/science/article/B6V06-4F490KH-6/2/6ebfa65591e5d0eb09e2ae5ae3b2ed44
http://www.sciencedirect.com/science/article/B6V06-4F490KH-6/2/6ebfa65591e5d0eb09e2ae5ae3b2ed44


11

8 SUPPLEMENTAL MATERIAL

In this document, we give derivation details for our
model in the original paper. Please refer to the paper
for a high level description of the model.

9 MODEL DERIVATIONS

9.1 Probability and Expected Run Time Vectors
Upon transitioning into the first computation state of
an X(k, c), Y (k, c), or Z(k, c) block, the system will
eventually either transition out of the block to the
first computation state of the next block, or it will
transition to an external recovery state at some level
k ∈ 1, 2, · · · , L. We represent the probabilities and
expected run times for each of these transitions in
vectors ~p and ~t, which we compute for each block.
Each vector has L+1 elements where the i-th element,
for i ∈ 0, 1, · · · , L, is labeled pi and ti, respectively.
The elements of ~p are labeled pi for i ∈ 0, 1, · · · , L, and
the elements of ~t are labeled ti for i ∈ 0, 1, · · · , L. The
variable p0 represents the probability that a transition
is made from a block to the first computation state of
the next block, and t0 represents the expected run time
spent within the block given such a transition. Vari-
ables pk, for k ∈ 1, 2, · · · , L represent the probability
that a transition is made from a block to an external
recovery state due to a failure scenario requiring a
recovery at level k, and element tk represents the
expected run time spent in the block given such a
transition.

We define ~p and ~t similarly for the base recovery
states. In this case, p0 and t0 represent the probability
and expected run time of completing the recovery pro-
cess without failure and transitioning to the computa-
tion state that follows the checkpoint used for recovery.
Element pk represents the probability of encountering
a level k failure while in recovery, and tk represents the
expected run time before encountering such a failure.

Given the constituent components that a block is
built from, along with the ~p and ~t vectors for each of
those components, we can compute the ~p and ~t vectors
for the block. Starting from the base computation and
recovery states, we can compute the probability and
expected run time vectors for all blocks in a given
model structure.

We use the definitions listed in Table 3 to parame-
terize our multi-level checkpoint model. The number
of checkpoint levels is represented by L. The number
of level k checkpoints taken within each level k + 1
period is represented by vk, for k ∈ 1, 2, · · · , L − 1.
We assume the application checkpoints (to some level)
after completing regular intervals of computation. We

represent the length of this compute interval by t. The
parameter ck represents the time required to write a
level k checkpoint, and rk represents the time required
to restore an application using a level k checkpoint. In
this work, we assume failures at each level follow a
Poisson distribution, where λk represents the average
failure rate at level k.

The multi-level checkpointing model relies on a
number of definitions and notation details. These are
listed in Table 3. Symbols t, ck and rk determine
the time spent performing the basic computation and
reliability operations, with t being the duration of a
level 1 execution period, and ck and rk being the
times to record a level k checkpoint and perform a
level k recovery, respectively. L and V determine the
structure of the multi-level checkpointing system, with
L being the number of levels modeled and vk being the
number of level k periods inside each level k+1 period.
Functions fi(t) and Fi(T ) determine the reliability of
the modeled system, with fk(t) being the probability
of suffering a level k failure at time t and Fk(T ) the
probability of a level k failure in the time period [0..T ].
Finally, the function pi(T ) and ti(T ) are the probability
of and expected time until an application activity that
takes T time is aborted due to a level i failure. p0(T )
and t0(T ) are the probability of and expected time
until a successful completion of a T -duration activity,
because no failures are encountered. These determine
the probability of and expected time to transition from
a given Markov state either successfully or unsucces-
fully.

9.2 Basic Derivations

We will utilize the following formulas in our analysis.
The following two formulas compute the sums of
geometric series for when x 6= 1:

N∑
i=0

xi =
1− x(N+1)

1− x
, (1)

N∑
i=1

i · xi =
x− (N + 1) · x(N+1) +N · x(N+2)

(1− x)2
. (2)

When a block has multiple edges that transition to
the same destination block, we apply the following
forumlas to merge those edges into a single logical
edge. Assume a block has N edges with probabilities
pi and expected costs ti for i ∈ 1, 2, · · · , N that all
transition to the same destination block. These edges
can be combined into a single logical edge having



12

Symbol Definition
L Number of checkpoint levels being

modeled
vk Number of level k checkpoints within

each level k + 1 period
t Length of compute interval before

application initiates a checkpoint
ck Time to record a level k checkpoint
rk Time to complete a level k recovery
λk Average rate of level k failures assuming

Poisson distributions
p0(T ) The probability of completing an activity

that takes T time without experiencing
any failures

t0(T ) Given no failures occurred during an
activity of duration T , the expected time
to complete this activity.

pi(T ) The probability of aborting an activity
(computation, checkpointing or recovery)
that takes T time due to level i failure

ti(T ) Given that an activity of duration T was
aborted by a level i failure, the expected
time until this happens.

TABLE 3
Model parameters

probability P and expected cost T computed as

P =

N∑
i=1

pi (3)

and when P > 0,

T =

∑N
i=1 pi · ti
P

. (4)

Sometimes a block may have one or more edges that
loop back to itself. Often what is of interest is the total
probability and expected cost to transition from one
block to a different block. In these cases, it is useful
to merge the effects of a loop-back edge into the edges
that lead away from a block by appropriately adjusting
the probabilities and expected costs of those edges that
lead away. Assume a block has an edge that leads
away with probability p and expected cost t and a
loop-back edge with probability ploop and expected cost
tloop. Then, the total probability P and expected cost T
that a transition is made away from the block via the
particular away edge being considered, accounting for
an arbitrary number of possible loops before making

that transition is given by

P =

{
p

1−ploop for ploop < 1,

0 for ploop = 1
(5)

and when P > 0,

T = t+
ploop

1− ploop
· tloop. (6)

9.3 Base States

For the base computation and recovery states, p0 is the
probability that the application executes for a certain
period of time without encountering a failure, and t0 is
the length of this period. Further, pk for k ∈ 1, 2, · · · , L,
is the probability that a level k failure occurs before any
other failure during this period, and tk is the expected
run time before encountering such a failure. Given
fk(t) and Fk(T ), we can directly compute the elements
of ~p and ~t for the base states. First, we show the general
solution. Assume there are L different classes, or levels,
of failures, numbered 1, 2, · · · , L. Assume a failure in
one class is independent of failures in all other classes,
and assume failures within a class are independent
of one another. Since failures at different levels are
assumed to be independent, the probability that there
are no failures at any level during the time interval
t = 0 to t = T is given by

p0(T ) = (1− F1(T )) · (1− F2(T )) · · · (1− FL(T )),

and the expected run time given that no failures
occur during that interval is simply

t0(T ) = T.

We next compute the probability that a level i failure
will occur before a failure occurs at any other level
during the time interval t = 0 to t = T . Consider a
very small interval of time from t to t + ∆t, where
0 ≤ t < T . The probability that a level i failure will
occur during this interval is approximately fi(t) · ∆t.
The probability that a failure at another level has not
occured up until time t is

(1− F1(t)) · (1− F2(t)) · · ·
· · · (1− Fi−1(t) · (1− Fi+1(t)) · · ·
· · · (1− FL(t)).

Furthermore, for each level k ∈ 1, 2, · · · , L, the prob-
ability that a level k failure will occur before a failure



13

occurs at any other level during the time interval t = 0
to t = T is given by

pk(T ) =

∫ T

0

(1− F1(t)) · (1− F2(t)) · · ·

· · · (1− Fk−1(t)) · fk(t) · (1− Fk+1(t)) · · ·
· · · (1− FL(t)) dt.

The integrand above expresses the probability that
a level k failure will occur during some infinitesimally
small interval of width dt starting at time t,

fk(t) dt,

multiplied by the probability that a failure at another
level has not already occurred by time t,

(1− F1(t)) · (1− F2(t)) · · ·
· · · (1− Fk−1(t)) · (1− Fk+1(t)) · · ·
· · · (1− FL(t)).

The integral then sums the probabilities of each of
these small intervals for all values of t between 0 and T
to derive the total probability that a level k failure will
occur before a failure occurs at any other level during
the full time interval from t = 0 to t = T .

Similarly, when pk(T ) > 0, the expected run time
given that a level k failure occurs before a failure occurs
at any other level during the time interval t = 0 to
t = T is given by

a =

∫ T

0

t · (1− F1(t)) · (1− F2(t)) · · ·

(1− Fk−1(t)) · fk(t) · (1− Fk+1(t)) · · · (1− FL(t)) dt

tk(T ) =
a

pk(T )
.

The expressions for p0(T ) and t0(T ) evaluate to
p0(T ) = e−λT and t0(T ) = T , and for k ∈ 1, 2, · · · , L,
pk(T ) and tk(T ) evaluate to

pk(T ) =
λk
λ

(1− e−λT ), tk(T ) =
1− (λT + 1) · e−λT

λ · (1− e−λT )
,

where λ = λ1 + λ2 + · · ·+ λL.

9.3.1 Computation state: a Y (k = 1, c) block
A Y (k = 1, c) block is a base computation state
in which the application executes for an interval of
length t and then writes a checkpoint at level c, which
requires a time of cc. We denote the probability and

expected run time vectors for this state as ~pY and ~tY ,
respectively. Using the formulas from Section 9.3 we
find that pY 0 = p0(t + cc) and tY 0 = t0(t + cc), and
for i ∈ 1, 2, · · · , L, pY i = pi(t + cc), and when pY i > 0,
tY i = ti(t+ cc).

9.3.2 Recovery state at level k

While in a recovery base state at level k, the system
is recovering from a failure using a checkpoint saved
at level k, which requires a time of rk. We denote the
probability and expected run time vectors for this state
as ~pR and ~tR. Using the formulas from Section 9.3,
substituting i for k as a subscript label, and setting
T = rk, we find that pR0 = p0(rk) and tR0 = t0(rk).

If a failure occurs while in recovery, the recovery
must be restarted. We specify which recovery state the
system transitions to when discussing the X block. For
now, we simply fill in ~pR and ~tR with values based on
the recovery state required to handle the failure that
occurs while in recovery, ignoring the level of the re-
covery state the system is currently in when that failure
occurs. Thus, for each failure level i ∈ 1, 2, · · · , L, the
probability that a level i failure occurs before a failure
at any other level during the interval from t = 0 to
t = rk is

pR0 = p0(rk) = e−λ·rk , tR0 = t0(rk) = rk,

and for i ∈ 1, 2, · · · , L, pRi = pi(rk), and when pRi > 0,
tRi = ti(rk).

9.4 The X(k, c) block

An X(k, c) block internally consists of a Y (k, c) block
and a recovery state at level k, which we denote by
Rk. We refer to these three components as simply X ,
Y , and R. A diagram of an X(k, c) block is shown
in Figure 13(a). Here we compute the probability and
expected run time vectors for X , which we denote as
~pX and ~tX , assuming that we are given the vectors

for Y , as ~pY and ~tY , and R, as ~pR, and ~tR. To
simplify the final expressions, we merge groups of
related transitions into single transitions. We show the
merged transitions in Figure 13(b) (See Section 9.2 for
details on merging transitions.)
Y transitions to the recovery state R for any failure

scenario that requires a recovery level at k or less.
We merge each of these transitions from Y to R into
a single transition having probability of PY R and an
expected run time of TY R, as shown in the top portion
of Figure 14. Using formulas 3 and 4 from Section 9.2,



14

Rk

PRXk+1
TRXk+1

PRXk+2
TRXk+2

PRXL
TRXL

Rk

PRR
TRR

Rk

. . .

pY2
tY2

pY1
tY1

pYk
tYk

. . .

Y(k,c)

PYR
TYR

Y(k,c)

pR0
tR0

Y(k,c)

Rk

PRR
TRR

Y(k,c)

PRY
TRY

Merge multiple edges 
from Y to R into a 

single edge.

Merge multiple loops 
from R to R into a 

single edge.

pRk
tRk

pRk+1
tRk+1

pRk+2
tRk+2

pRL
tRL

Merge loop on R into 
edges leading away 
from R by adjusting 

probabilities and times 
to account for arbitrary 
loops within R before 

leaving.

pR2
tR2

pR1
tR1

pRk-1
tRk-1

Xk+1 Xk+2 XL Xk+1 Xk+2 XL

Merge multiple edges
from R to Xk+1 into

a single edge

Fig. 14. Merging edges in X(k, c)

we get

PY R =

k∑
i=1

pY i TY R =

∑k
i=1 pY i · tY i
PY R

.

The R state has zero or more edges that loop back to
itself, because a recovery state at the maximum level
k = L is restarted upon the occurrence of a failure
at any level, and a recovery state at a level k < L
is restarted upon the occurrence of a failure at any
level less than k. When k < L, a failure occurring at

level k or higher requires a transition from Rk to a
higher level recovery state. In particular, while in Rk,
we assume a failure at level k requires the system to
transition to a recovery state of at least level k + 1.
Again using formulas from Section 9.2, we merge each
of these possible transitions from R to R into a single
transition having probability PRR and an expected run



15

(a) Full diagram of X(k, c)

(b) Simplified diagram of X(k, c)

Fig. 13. The X(k, c) State

time TRR as shown in the top portion of Figure 14:

PRR =


0 for k = 1,∑k−1
i=1 pRi for 1 < k < L,∑k
i=1 pRi for k = L

and, when PRR > 0,

TRR =

{∑k−1
i=1 pRi·tRi

PRR
for 1 < k < L,∑k

i=1 pRi·tRi

PRR
for k = L.

The last substitution we make is to collapse the single
loop transition from R to R into the transitions leading
away from R. Upon entering R, a transition away from
R eventually happens, provided PRR < 1. However,
one or more loops back to R may occur before transi-
tioning away. It is possible to adjust the probabilities
and expected run times of the transitions leading away
from R to account for an arbitrary number of loops
back to R before making the transition away. Deriva-
tion of the formulas to make these adjustments is

provided in Section 9.2. We collapse this loop transition
into the transitions leading away from R. by defining
new transitions out of R having probabilities PRY
and PRXi

with expected run times TRY and TRXi
for

i ∈ k, k + 1, · · · , L as shown in the bottom portion
of Figure 14. First, consider the transition from R to
Y . Using formulas from Section 9.2, we collapse the
loop from R to Y define its probability to be PRY and
expected run time to be TRY as shown in Figure 13(b).
First, we collapse the loop into the transition from R to
Y by adjusting the probability of this transition from
pR0 to PRY with to PRY We account for the effects of
the loop on this transition by adjusting its probability
and expected run time by collapsing the loop into this
transition we get

PRY =

{
pR0

1−PRR
for PRR < 1,

0 for PRR = 1,

and, when PRY > 0,

TRY =

{
tR0 for PRR = 0,

tR0 + PRR

1−PRR
· TRR for 0 < PRR < 1.

The transitions from R to external recovery states
have probability PRXi

and expected run time TRXi
,

as shown in Figure 13(b). Recall under our model
that a recovery state at the maximum level k = L is
restarted upon the occurrence of a failure at any level.
Such a state only contains loop-back transitions. In this
case, there is zero probability that R transitions to an
external recovery state, so when k = L, we have for
each i ∈ 1, 2, · · · , L PRXi

= 0. While in a recovery state
at level k, where k < L, the system transitions to a
recovery state at level k+1 if either a level k failure or a
level k+1 failure occurs. Otherwise, for the occurrence
of a failure at level i, where i > k + 1, a transition is
made to a recovery state at level i. Thus, when k < L,
we have for each i ∈ 1, 2, · · · , L

PRXi
=


0 for 1 ≤ i ≤ k or PRR = 1,
pRk+pR(k+1)

1−PRR
for i = k + 1 and PRR < 1,

pRi

1−PRR
for i > k + 1 and PRR < 1,

and, when PRXi > 0,

TRXi =


pRk·tRk+pR(k+1)·tR(k+1)

pRk+pR(k+1)

+ PRR

1−PRR
· TRR for i = k + 1,

tRi + PRR

1−PRR
· TRR for i > k + 1.

After making all of these transformations, the simpli-
fied X(k, c) block is shown in Figure 13(b). Finally, we
derive the total probabilities and expected run times to



16

Fig. 15. The Z(k, c) State

transition out of the X block as

pX0 =

{
pY 0

1−PY R·PRY
for PY R · PRY < 1,

0 for PY R · PRY = 1,

and, when pX0 > 0,

tX0 = tY 0 +
PY R · PRY

1− PY R · PRY
· (TY R + TRY ).

Also, for each level i ∈ 1, 2, · · · , L

pXi =

{
0 for 1 ≤ i ≤ k or PY R · PRR = 1,
pY i+PY R·PRXi

1−PY R·PRY
for i > k and PY R · PRR < 1,

and, when pXi > 0,

tXi =
pY i · tY i + PY R · PRXi

· (TY R + TRXi
)

pY i + PY R · PRXi

+
PY R · PRY

1− PY R · PRY
· (TY R + TRY ).

9.5 The Z(k, c) block
A Z(k, c) block only exists when vk > 0, and consists
of a chain of X(k, k) blocks of length vk − 1 followed
by a single X(k, c) block, shown in Figure 15. We refer
to these blocks as simply Z, X , and X ′, where Z =
Z(k, c), X = X(k, k), and X ′ = X(k, c). Also, we define
v such that v = vk−1. Here we compute the probability
and expected run time vectors for Z, which we denote
as ~pZ and ~tZ , assuming that we are given the vectors
for X , as ~pX and ~tX , and X ′, as ~pX′ and ~tX′ .

The probability of successfully transitioning from the
Z block to the first computation state of the next block
is the probability that v consecutive successful transi-
tions out of X blocks are followed by one successful
transition out the X ′ block, pZ0 = (pX0)v · pX′0. When
pZ0 > 0, the expected time to make this transition is
tZ0 = v · tX0 + tX′0.

For each failure level i ∈ 1, 2, · · · , L, there are
multiple paths through Z which require a transition

to a recovery state at level i. The first X block may
transition to a recovery state at level i. Or, that block
may transition successfully to the next X block, which
in turn may transition to a recovery state at level i.
Or, the first two X blocks may transition successfully
on to the the third X block, which may transition to a
recovery state at level i, and so on up to and including
the final X ′ block. The total probability to leave Z for a
recovery state at level i is the sum of the probabilities
corresponding to each of the possible paths from the
substates of Z,

pZi =pXi + pX0 · pXi + (pX0)2 · pXi
+ · · ·+ (pX0)v−1 · pXi + (pX0)v · pX′i

pZi =(1 + pX0 + (pX0)2

+ · · ·+ (pX0)v−1) · pXi + (pX0)v · pX′i.

which can be simplified to

pZi =

{
1−(pX0)

v

1−pX0
· pXi + (pX0)v · pX′i for pX0 < 1,

pX′i for pX0 = 1.

When pZi > 0, the time to transition from Z to a
recovery state at level i is

tZi =
A(pX0, tX0, pXi, tXi, pX′i, tX′i)

pZi

where

A(p0, t0, p, t, p
′, t′) = B(p0, t0, p, t) + (p0)v · p′ · (v · t0 + t′),

B(p0, t0, p, t) = (1 + (p0)1 + (p0)2 + · · ·+ (p0)v−1)

· p · t+ (1 · (p0)1 + 2 · (p0)2 + · · ·+
(v − 1) · (p0)v−1) · p · t0.

9.6 The Y (k, c) block

A Y (k, c) block is built using three different construc-
tions depending on the values of k and (when k > 1)
vk−1. If k = 1, then Y (k, c) = Y (k = 1, c), which is a
base computation state. The probability and expected
run time vectors for this state can be directly computed
as described in Section 9.3.1.

If k > 1 and vk−1 = 0, then Y (k, c) consists of a
single Y (k − 1, c) block. We refer to these blocks as
Y and Y ′, where Y = Y (k, c) and Y ′ = Y (k − 1, c).
Here we compute the probabilities and expected run
times to transition out of Y given the probabilities and
expected run times to transition out of Y ′ as That is,
we compute ~pY and ~tY given ~pY ′ and ~tY ′ . Because Y
consists solely of Y ′, the probability and expected run
time vectors to transition out of Y , which we denote
as ~pY and ~tY , are trivially computed given the vectors



17

Fig. 16. The Y (k, c) State for k > 1 and vk−1 > 0

for Y ′, as ~pY ′ and ~tY ′ : pY 0 = pY ′0 and tY 0 = tY ′0, and,
for each level i ∈ 1, 2, · · · , L, pY i = pY ′i and tY i = tY ′i.

If k > 1 and vk−1 > 0, then Y (k, c) consists of a
starting Y (k− 1, k− 1) block followed by a Z(k− 1, c)
block, as shown in Figure 16. We refer to these states as
Y , Y ′, and Z, where Y = Y (k, c), Y ′ = Y (k − 1, k− 1),
and Z = Z(k − 1, c). The probability and expected
run time vectors to transition out of Y , which we
denote as ~pY and ~tY , assuming that we are given the
vectors for Y ′, as ~pY ′ and ~tY ′ , and Z, as ~pZ and ~tZ .
The probability that a successful transition out of Y
occurs is the probability that both Y ′ and Z transition
successfully, pY 0 = pY ′0 ·pZ0 and the expected time for
this transition is tY 0 = tY ′0 + tZ0.

For each failure level i ∈ 1, 2, · · · , L, there are two
possible paths through Y that can cause a transition to
a recovery state at level i. The Y ′ block may transition
immediately to a recovery state at level i, or the Y ′

block may transition successfully to Z, which in turn
may transition to a recovery state at level i. The total
probability to leave Y for a recovery state at level i
is the sum of the probabilities corresponding to each
path pY i = pY ′i+pY ′0 ·pZi. When pY i > 0, the expected
run time of this transition is

tY i =
pY ′i · tY ′i + pY ′0 · pZi · (tY ′0 + tZi)

pY i
.

10 SCAVENGE MODEL

Here, we extend our model to explore the scenario
where level L checkpoints are written only upon job
termination instead of periodically throughout the run.
We refer to the process of pushing a checkpoint set
to the parallel file system upon allocation termination
as scavenging a checkpoint. Scavenging only occurs on
application failure. Level k < L checkpoints will be
taken at regular intervals during the application run
and cached on the compute nodes.

Our approach to computing efficiency with our
model is based on computing the amount of work done

in each state. On failure, if it is possible to scavenge
a checkpoint from a state, we export the expected
amount of work done before the failure occurs. If it is
not possible to scavenge a checkpoint from a state, we
export the expected amount of work done on failure
transitions only. A transition out of a state on success
means that no failures occurred and the amount of
work accomplished is the work accumulated in any
substates of the current state.

If a level k failure occurs and the current state
contains a level i ≥ k checkpoint, we can scavenge
a checkpoint; we call this transitioning on scavenge.
In this case, the amount of work completed is the
amount of work accumulated in substates before the
failure. A transition on failure occurs if the current
state does not contain a level i ≥ k checkpoint or a
level i ≥ k failure occurs during the scavenge process.
On failure transitions at level i > k, the amount
of work completed in the current state is zero. In
the extreme case, if no completed checkpoints can be
scavenged and the application must roll back to the
last level L checkpoint, the total expected amount of
work completed is zero.

Changes to our model are: Recovery states within
X(k, c) are now scavenge states. Transitions from each
compute state at failure levels i <= k are now called
scavenge transitions. Instead of maintaining the prob-
ability, expected total time, and expected amount of
work at each failure level for scavenge transitions, we
compute the overall expected values.

10.1 Y States
10.1.1 Computation state: a Y (k = 1, c) block
In the simplest case, we have a Y (k = 1, c) block, which
only contains a single compute interval of duration
t followed by a level c checkpoint, shown in Figure
17(a). Upon transition on success from this state, the
expected amount of work completed will be t and
the expected amount of time in Y is t0, as derived
in Section 9.3.1. Upon transition from Y on failure for
any level i ∈ 1, 2, · · · , L, wY i = 0 because no work
interval and checkpoint were completed successfully.
The probabilities and times for transitioning out of Y
are the same as were derived in Section 9.3.1. There is
no possibility of transitioning out of Y on scavenge,
because there is no scavenge state contained within a
Y (k = 1, c) state. Therefore, on transtion out of Y on
scavenge, pS = 0, tS = 0, and wS = 0.

10.1.2 The Y (k > 1, c) block
In the case where vk−1 = 0, Y consists of a single
enclosed Y (k− 1, c) state, Y ′ as shown in Figure 17(b).



18

(a) Y (k = 1, c)

(b) Y (k > 1, c) for vk−1 = 0

(c) Y (k > 1, c) for vk−1 > 0

Fig. 17. The Y (k, c) States

The probabilities and times for transitioning out on
success or failure are computed in Section 9.6. The
work completed for a transition out of Y on success
or failure is wY 0 = wY ′0 and wY i = wY ′i = 0. For a
scavenge transition, we have pY S = pY ′S , tY S = tY ′S ,
and wY S = wY ′S .

In the case where vk−1 > 0, Y consists of a Y (k −
1, k−1) state, Y ′, and a Z(k−1, c) state, Z (Figure 17(c)).
Here, on transition out of Y on success, pY 0 and tY 0 are
the same as derived in Section 9.6 and wY 0 is the sum
of the work done in Y ′ and Z, wY 0 = wY ′0+wZ0. On a
transition out of Y on failure at levels i ∈ 1 · · ·L, then
again pY i and tY i are the same as derived in Section

Fig. 18. Z(k, c) State

9.6 and wY i = 0. On a transition out of Y on scavenge,

pY S = pY ′S + pY ′0 · pZS

tY S =
pY ′S · tY ′S + pY ′0 · pZS(tY ′0 + tZS)

pY S

wY S =
pY ′S · wY ′S + pY ′0 · pZS(wY ′0 + wZS)

pY S
.

10.2 Z State
A Z(k, c) state, Z consists of v = vk − 1 consecutive
X(k, k) states X , followed by a single X(k, c) state X ′

(Figure 18). The probabilities and times for transition-
ing out of Z on success are the same as derived in
Section 9.5, and the expected amount of work that is
performed in Z on successful transition out of the state
is simply wZ0 = wX0 · v+wX′0. On transition out of Z
on failure for i ∈ 1 · · ·L, pZi and tZi remain the same
as in Section 9.5 and the amount of work completed is
wXi = 0.

The probability of a transition out of Z on scavenge
is the probability that any of the subset X states
transition on scavenge. Using the result from Section
9.5 for pZi, we have

pZS =

{
1−(pX0)v

1−pX0
· pXS + (pX0)v · pX′S for pX0 < 1

pX′S for pX0 = 1.

Similarly, the expected time before leaving Z on scav-
enge is

tZS =
A(pX0, tX0, pXS , tXS , pX′S , tX′S)

pZS
,

where A is defined in Section 9.5. And finally, the
amount of work performed in Z before transition out
on scavenge is

wZS =
A(pX0, wX0, pXS , wXS , pX′S , wX′S)

pZS
.



19

Fig. 19. X(k, c) State

10.3 X State

An X(k, c) state, X consists of a Y (k, c) state, Y , and a
scavenge state σk. A failure at level i ≤ k in Y causes
a transition from Y to σk. For any failures at levels
i < k that occur in σk, the scavenge operation restarts.
Failures at levels i ≥ k in Y or i ≥ k in σk, cause a
transition out of X on failure.

The probability and time for transitioning out of X
on success are pX0 = pY 0 and tX0 = tY 0. The expected
amount of work that is performed in X on successful
transition out of the state is the amount of work that
was performed in Y , wX0 = wY 0.

A failure at level i ≤ k in Y causes a transition to
the scavenge state σk. The amount of work done on
transition from Y to σ is wY σ = 0. The probability and
time for transitioning from Y to σk on failure at level
i ≤ k are

PY σ =

k∑
i=1

pY i TY σ =

∑k
i=1 pY i · tY i
PY σ

.

As stated previously, we estimate the time for a suc-
cessful scavenge operation as the time for a level L
checkpoint, cL. From Section 9.3, the probabilities and
times before transitioning out of σk on success or
failure at level i are

pσ0 = p0(cL) pσi = pi(cL) tσ0 = t0(cL) tσi = ti(cL).

Failures at levels i < k cause a restart of the scavenge
operation. The probabilty and time before a restart of
the scavenge operation are Pσσ and Tσσ . No work is
done in σk, so wσi = 0. The expected probability and
time before a level i < k failure and restart of the

scavenge operation are

Pσσ =

k−1∑
i=1

pσi Tσσ =

∑k−1
i=1 pσi · tσi
Pσσ

.

Given the derivations for merging loop-back edges
in Section 9.2, The probabililty and time for leaving σk
on success or failure for i ∈ 0, 1, · · · , L are

Pσi =
pσ0

1− Pσσ
Tσi = tσ0 +

Pσσ
1− Pσσ

· Tσσ.

The amount of work accomplished is Wσi = wσ0. How-
ever, if Pσσ = 1 then, Pσi, Tσi, and Wσi are zero. The
probabililty, time, and amount of work accomplished
on leaving σk for a scavenge state at level i or higher
for i ≥ k are

Pσi =
pσi

1− Pσσ
Tσi = tσi +

Pσσ
1− Pσσ

· Tσσ

Wσi = 0.

When transitioning out of X on failure at level i = k,
the probability, time, and work only depend on the
scavenge state. However, when transitioning out of X
on failure at level i > k, the values depend on the Y
and scavenge states,

PXi =

{
PY σ · Pσi for i = k

pY i + PY σ · Pσi for i > k.

TXi =


PY σ · Pσi(TY σ + Tσi)

PXi
for i = k

pY i · tY i + PY σ · Pσi(TY σ + Tσi)

PXi
for i > k

WXi = 0 .

The probabilities, times, and amount of work done
for transitions out of X on successful scavenge are

PXS = pY S + PY σ · PσS

TXS =
pY S · tY S + PY σ · PσS(TY σ + TσS)

PXS

WXS =
pY S · wY S + PY σ · PσS(wσS)

PXS
.


	Introduction
	Related Work
	The SCR Library
	Multilevel Checkpoint Model
	Model Overview
	Base States
	The X(k,c) block
	The Z(k,c) block
	The Y(k,c) block
	Model Metrics

	Model Exploration
	Scavenging of Last Checkpoint
	Y States
	Z State
	X State
	Model Predictions of Benefits of Scavenge

	Conclusions
	References
	Supplemental Material
	Model Derivations
	Probability and Expected Run Time Vectors
	Basic Derivations
	Base States
	Computation state: a Y(k=1,c) block
	Recovery state at level k

	The X(k,c) block
	The Z(k,c) block
	The Y(k,c) block

	Scavenge Model
	Y States
	Computation state: a Y(k=1,c) block
	The Y(k > 1,c) block

	Z State
	X State


